
CODEP: Grammatical Seq2Seq Model for General-Purpose
Code Generation∗

Yihong Dong
Key Lab of High Confidence Software
Technology, MoE (Peking University)

Beijing, China
dongyh@stu.pku.edu.cn

Ge Li†
Key Lab of High Confidence Software
Technology, MoE (Peking University)

Beijing, China
lige@pku.edu.cn

Zhi Jin
Key Lab of High Confidence Software
Technology, MoE (Peking University)

Beijing, China
zhijin@pku.edu.cn

ABSTRACT
General-purpose code generation aims to automatically convert the
natural language description to code snippets in a general-purpose
programming language (GPL) such as Python. In the process of
code generation, it is essential to guarantee the generated code
satisfies grammar constraints of GPL. However, existing sequence-
to-sequence (Seq2Seq) approaches neglect grammar rules when
generating GPL code. In this paper, we devise a pushdown automa-
ton (PDA)-based methodology to make the first attempt to consider
grammatical Seq2Seq models for general-purpose code generation,
exploiting the principle that PL is a subset of PDA recognizable
language and code accepted by PDA is grammatical. Specifically,
we construct a PDA module and design an algorithm to constrain
the generation of Seq2Seq models to ensure grammatical correct-
ness. Guided by this methodology, we further propose CODEP, a
code generation framework equipped with a PDA module, to in-
tegrate the deduction of PDA into deep learning. This framework
leverages the state of PDA deduction (including state representa-
tion, state prediction task, and joint prediction with state) to assist
models in learning PDA deduction. To comprehensively evaluate
CODEP, we construct a PDA for Python and conduct extensive
experiments on four public benchmark datasets. CODEP can em-
ploy existing sequence-based models as base models, and we show
that it achieves 100% grammatical correctness percentage on these
benchmark datasets. Consequently, CODEP relatively improves 17%
CodeBLEU on CONALA, 8% EM on DJANGO, and 15% CodeBLEU
on JUICE-10K compared to base models. Moreover, PDA module
also achieves significant improvements on the pre-trained models.

CCS CONCEPTS
• Software and its engineering→ Software creation and man-
agement; • Computing methodologies → Artificial intelli-
gence.

∗The code of CODEP and PDA is avaliable on https://github.com/YihongDong/CODEP
†Corresponding author.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
ISSTA ’23, July 17–21, 2023, Seattle, WA, USA
© 2023 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 979-8-4007-0221-1/23/07. . . $15.00
https://doi.org/10.1145/3597926.3598048

KEYWORDS
Code generation, Code intelligence, Seq2Seq, PDA, PL.

ACM Reference Format:
Yihong Dong, Ge Li, and Zhi Jin. 2023. CODEP: Grammatical Seq2Seq
Model for General-Purpose Code Generation. In Proceedings of the 32nd
ACM SIGSOFT International Symposium on Software Testing and Analysis
(ISSTA ’23), July 17–21, 2023, Seattle, WA, USA. ACM, New York, NY, USA,
11 pages. https://doi.org/10.1145/3597926.3598048

1 INTRODUCTION
Code generation techniques are critical in artificial intelligence and
software engineering, which aims to help facilitate software devel-
opment and revolutionize user programming [7, 14, 19, 22, 26, 38–
41, 44]. For example, in Fig. 1, a programmer wants to terminate
the program under the specific condition “list 𝑙 is empty" in Python,
but does not know the relevant prior knowledge to realize their
intention. By using code generation techniques, the target code
“if not 𝑙 : exit(0)” can be obtained with ease. A well-designed code

Figure 1: Illustration of code generation.

generation approach requires consideration of grammar in addi-
tion to semantics, as semantics ensures the functionality of code
meets developer’s intention, while satisfying grammar is a basic
requirement for programming. The two complement each other to
produce a satisfactory code.

Seq2Seq approaches are the most commonly used in code gen-
eration [4, 11, 16, 23, 27, 38], which have the following three ad-
vantages: 1) High efficiency. Seq2Seq approach directly generates a
token sequence of code along the order of human writing in one
pass. 2) Convenient operation. It can obtain partially generated
code with ease even if the result is incomplete or the generation is
not finished, thus can be adopted for various code generation sce-
narios 1. 3) Easy data accessibility. Sequence structured data is the

1For example, code completion, a popular variant of code generation in practice, which
completes code with contexts.

188

https://github.com/YihongDong/CODEP
https://doi.org/10.1145/3597926.3598048
https://doi.org/10.1145/3597926.3598048
http://crossmark.crossref.org/dialog/?doi=10.1145%2F3597926.3598048&domain=pdf&date_stamp=2023-07-13

ISSTA ’23, July 17–21, 2023, Seattle, WA, USA Yihong Dong, Ge Li, and Zhi Jin.

Figure 2: Examples of a parser parsing Python code.

most general form that can be obtained without much effort com-
pared to other structured data. Thus, pre-trained methods with big
data-driven usually employ Seq2Seq approaches [2, 8, 11, 14, 23, 38].
However, most Seq2Seq approaches generate codes with no guar-
antee of grammatical correctness (GC), which hinders the usability
of generated codes.

Sequence-to-tree (Seq2Tree)-based approaches for code gener-
ation are generally used to ensure GC by deriving the syntactic
structure [26], which outputs a node sequence of abstract syntax
tree (AST) that can be further mapped to well-formed code. At
a cost, they are inferior to Seq2Seq approaches in the preceding
three aspects. Therefore, an ideal code generation approach could
preserve the advantages of Seq2Seq approaches while ensuring GC.

According to automata theory, we find that PDA is suitable for
PL grammar and has the following properties to deal with non-
grammatical problems of Seq2Seq-based code generation. The first
property is a valid terminal symbol set for next token prediction, and
the second is an accept state set for recognizing completed code. In
a practical Seq2Seq-based code generation process, what we really
care about are two typical grammatical error: terminal symbol
mismatch (TSM) error and end with non-accept state (ENS) error,
where ENS error can be tolerable until the end of Seq2Seq-based
code generation process. As a result, satisfying grammar constraints
during Seq2Seq-based code generation require the preceding two
properties, and constraining Seq2Seq-based code generation based
on PDA to guarantee GC is a matter of course.

It is inspired by the operating principle of programming language
parsers in practice. Fig. 2 demonstrates some examples of a parser
parsing python code, which contains two specific grammatical error
codes (a) and (b), and a grammatically correct code (c). Case (a)
indicates ENS error, and case (b) indicates TSM error. All cases
are recognized by a parser according to grammar. Therefore, a
straightforward way is applying a parser to constrain Seq2Seq-
based code generation, but it has the following two problems. First,
Seq2Seq models need to recognize grammatical errors during code
generation process. However, the vast majority of codes generated
during this situation are incomplete, i.e., parsing these codes will
produce ENS errors like case (a). Second, a parser can only recognize
TSM errors like case (b) if terminal symbol is fed to the parser. It
implies that Seq2Seq models need to attempt each generated code

token in the candidate set one by one, which is strenuous 2. In short,
although code can be grammatically bounded by a parser, it is still
challenging to work directly with a parser on Seq2Seq-based code
generation.

In this paper, we propose CODEP (a CODE generation frame-
work based on Pushdown automaton module) to ensure GC for
Seq2Seqmodels. PDAmodule facilitates CODEP to generate bounded
next prediction in a valid set and end with an accept state, utilizing
the principle that PDA can recognize grammatical codes. CODEP
not only ensures GC but also maintains the advantages of com-
monly used Seq2Seq-based code generation. We conduct a series of
experiments on four public benchmark datasets. Extensive experi-
mental results and analyses verify the effectiveness and generality
of CODEP.

The main contribution of this paper can be summarized in four-
fold:
• We devise a PDA-based methodology to guarantee grammat-
ical correctness for code generation, which consists of a PDA
module and an algorithm to simulate the deduction of PDA.
• We propose CODEP, a novel Seq2Seq-based code generation
framework incorporating the PDA module. In addition to
using the PDA-based methodology, CODEP leverages PDA
state through state representation, state prediction task, and
joint prediction with state, which helps learn PDA deduction.
• CODEP significantly enhances the performance of base mod-
els. Even in zero-shot setting, pre-trained models still show
remarkable improvements.
• Under the premise of ensuring grammatical correctness,
CODEP outperforms the state-of-the-art Seq2Tree models
without pre-training.

The remainder of this paper is organized as follows: Section 2
demonstrates a motivation example of our work. Section 3 intro-
duces the background and related work. Section 4 and 5 details the
proposed PDA-based methodology and CODEP. Sections 6 and 7
describe the experimental setup and experimental results. Section
8 describes the major limitations of our work. Section 9 concludes
this paper and discusses future work.

2For example, there are only 83 syntax-strings and 10 token-types in Python, and for
a 10k-length vocabulary, more than 99% of tokens belong to three token-types NAME,
STRING, and NUMBER. If models want to generate these types of tokens based on
semantics but are prevented by grammar, the cost of attempts could be overwhelming.

189

CODEP: Grammatical Seq2Seq Model for General-Purpose Code Generation ISSTA ’23, July 17–21, 2023, Seattle, WA, USA

2 MOTIVATION EXAMPLE

Figure 3: Motivation Example.

An example of Seq2Seq-based code generation constrained by
PDA module is shown in Fig. 3. Given an natural language (NL)
description, CODEP needs to generate code that satisfies its in-
tended functionality with the guarantee of GC. PDA module gives a
valid set of terminal symbols (i.e., candidate syntax-strings and
token-types) depending on grammar constraints, to which the
generated token of CODEP should belong. Specifically, in the be-
ginning, CODEP wants to generate first token from the vocabu-
lary of a model according to NL. Based on production rules, PDA
module shrinks the candidate set from entire vocabulary to 35
syntax-strings and 6 token-types, where each candidate token is
constrained by grammar. As a result, at step 1, CODEP picks a token
(i.e., ‘import’) from the candidate set according to semantics. At
each subsequent generation step, CODEP predicts a token in the
same manner, which satisfies grammar constraints. Until the end of
generation steps, CODEP outputs the token of ENDMARKER token-
type (e.g., </s>), which ends with an accept state. Thus, CODEP
generates a grammatical code with the help of PDA module.

In the way of the preceding example, we first introduce PDA into
deep learning (DL), which drastically shrinks the candidate set at
each step of generation and reduces the difficulty for the model to
select tokens from it, thus ensuring GC and improving the quality
of Seq2Seq-based code generation.

3 RELATEDWORK
3.1 General-Purpose Code Generation
In recent years, two kinds of prevailing approaches have been used
for general-purpose code generation.

3.1.1 Seq2Seq-Based Code Generation. Ling et al. [22] considered
the code generation task as a conditional text generation task and
adopted the Seq2Seq model to address it. Some later work [4, 16]
followed this generation approach. For example, the work [39] pro-
posed a dual training framework to train both code generation
and representation tasks simultaneously. CodeT5 [38], UniXcoder
[14], Codegen [23], and InCoder [11] applied pre-trained models to
code generation task. The work [38] proposed a unified pre-trained
encoder-decoder transformer model, named CodeT5, to better ex-
ploit the code semantics conveyed by the developer-assigned iden-
tifiers. The work [14] proposed a unified cross-modal pre-trained
model, named UniXcoder, for code generation, which used the mask
attention matrix with prefix adapters to control the behavior of
the model and leveraged cross-modal contents to enhance the code
representations. In addition, the authors in [37] considered code
compilability as a training objective based on pre-trained models,
but it still fails to guarantee GC.

Although Seq2Seq-based approaches are most commonly used
for code generation, they usually cannot guarantee GC.

3.1.2 Seq2Tree-Based Code Generation. Dong et al. [6] first consid-
ered the Seq2Tree model for code generation. To exploit the gram-
matical information of the code, the work [43] and [26] adopted
the encoder-decoder architecture to output the AST node sequence.
On this basis, TRANX [44] was proposed and became an effective
and widely used Seq2Tree model. Lots of work was based on and
improved upon TRANX, such as ML-TRANX [40], TRANX-RL [18],
ASED [17], and APT [9]. Moreover, the work [33] and [34] applied
the Seq2Tree convolutional neural network and Seq2Tree Trans-
former for code generation. The work [32] proposed Subtoken-
TranX that was adopted by Alibaba’s BizCook platform, which
is the first domain code generation system adopted in industrial
development environments.

Table 1: Comparisons of Seq2Seq and Seq2Tree code genera-
tion.

Seq2Seq Seq2Tree

Output length Same as token Much longer than token sequence
sequence of code of code (about 1.5-2 times)

Operation / NLP Easy Mediumtechnologies transfer

Data collection Easy Hard
(Especially for large-scale data)

Grammatical No Yescorrectness

A comparative view of the Seq2Seq and Seq2Tree code genera-
tion is shown in Table 1. Although Seq2Tree approaches can ensure
GC, they have three major disadvantages: 1) AST node sequence is
much longer (about 1.5-2 times) than token sequence [9], leading
to increased difficulty in generation. 2) The Seq2Tree approach has
to generate code with a complete tree structure, which makes the
operation of obtaining arbitrary code snippets more difficult. 3)
Assembling data for the Seq2Tree approach is laborious because
it requires the generation of AST based on syntactically complete
code.

190

ISSTA ’23, July 17–21, 2023, Seattle, WA, USA Yihong Dong, Ge Li, and Zhi Jin.

Figure 4: Schematic diagram of a Python grammar PDA parsing Python code.

Compared to Seq2Tree approaches, our proposed approach not
only ensures GC but also avoids the disadvantages of Seq2Tree
approaches.

3.2 Domain-Specific Code Generation
Grammatical Seq2Seq-based code generation. Scholak et al. [30] pro-
posed PICARD that constrains auto-regressive decoders of language
models through incremental parsing for a domain-specific language
(DSL), i.e., Structured Query Language (SQL). PICARD used a parser
for filtering in the beam search phase, meaning its candidate hy-
potheses might have terminal symbol mismatch errors. The work
[25] proposed constrained semantic decoding (CSD) to address this
problem for DSLs. However, both of them cannot extend to GPLs
like Python. For the work [30], it focuses on solving the grammat-
ical correctness of SQL generation tasks and uses a lot of prior
knowledge of SQL, making it difficult to extend to other PLs. For
the work [25], it uses a intuitive method to deal with the grammar
of DSLs, but GPLs usually have more complicated grammar than
DSLs, so as mentioned at the end of the paper [25], CSD cannot
handle GPLs like Python.

For all we know, the grammatical Seq2Seq model for code genera-
tion within the context of GPLs has not yet been studied. There is a
great need to ensure GC of Seq2Seq approaches for all PLs (including
DSLs and GPLs), thus we introduce PDA to ensure GC for Seq2Seq
code generation, which can be applied to all PLs.

4 METHODOLOGY
We first describe the core module of the proposed approach – a
PDA-based methodology consisting of a PDA module and the cor-
responding algorithm to obtain a valid set for ensuring GC during
code generation.

PLs (such as Python, Java, C++, etc.) belong to context-free lan-
guages, which can be accepted by a PDA [5, 10, 31]. A PDA𝑀 can
be defined as:

𝑀 = (𝑆 , Σ , Γ , 𝑠0 , 𝑔0 , 𝐴 , 𝛿) (1)
where
• 𝑆 is a finite set of states.
• Σ is a finite set of input symbols.
• Γ is a finite set of stack symbols.
• 𝑠0 ∈ 𝑆 is the start state.
• 𝑔0 ∈ Γ is the starting stack symbol.
• 𝐴 ⊆ 𝑆 , where 𝐴 is the set of accept states.
• 𝛿 is a transition function, mapping 𝑆 × Γ × (Σ ∪ {𝜀 }) into
the finite subsets of 𝑆 × Γ∗, where ∗ is the Kleene star.

To construct a PDAmodule for a PL grammar, we first define 𝑆 , Σ,
Γ, 𝑠0, 𝑔0, and 𝐴. In this paper, we adopt non-terminal symbols N ′𝑠
of production rules in PL grammar as 𝑆 , which can be changed with
the PDA you build. Σ is set to terminal symbols T ′𝑠 of production
rules and Γ is the union of T ′𝑠 and N ′𝑠 . In PL grammar, 𝑠0 and 𝑔0
are the starting non-terminal symbol, and 𝐴 is the set of ending
terminal symbols. As an example, in Python grammar PDA, 𝑠0 and
𝑔0 can be chosen as ‘file_input’, and 𝐴 is the set of ENDMARKER
token-type. Then, the definition of 𝛿 is:
• For each N , 𝛿(s, N ,𝜖) = {(s, 𝛽) | N → 𝛽 is a production rule
in PL grammar}.
• For each T , 𝛿(s, T , T) = {(s, 𝜖)}.

The input symbols I′𝑠 in Σ are finite, because grammar of PLs
merges the same type of tokens. For instance, each I in Python
belongs to one of 83 syntax-strings and 10 token-types. As shown in
Fig. 4, ‘import’ and ‘as’ are syntax-strings, while ‘numpy’ and ‘np’
belong to NAME token-type. Fig. 4 illustrates a Python grammar
PDA parsing ‘import numpy as np’. For a valid I = ‘import’, PDA
jumps to valid states and stacks based on 𝛿 .

191

CODEP: Grammatical Seq2Seq Model for General-Purpose Code Generation ISSTA ’23, July 17–21, 2023, Seattle, WA, USA

As shown in Algorithm 1, given current state 𝑠 and current stack
𝑔, PDA 𝑀 is able to provide the set of valid I′𝑠 according to 𝛿 . If
𝜀 belongs to the set of valid I′𝑠 , the state and stack transferred
after entering 𝜀 should be taken into account as well. Eventually,
we merge all sets of I′𝑠 under each state and stack and remove 𝜀
from them.

Due to computermemory constraints, most of PLs are determinis-
tic context-free languages, which can be accepted by a deterministic
pushdown automaton (DPDA) [29]. A PDA𝑀 is deterministic only
if both the following two conditions are satisfied:

• ∀𝑠 ∈ 𝑆, 𝑔 ∈ Γ,I ∈ Σ ∪ {𝜀}, |𝛿 (𝑠, 𝑔,I)| = 1 where |𝛿 (𝑠, 𝑔,I)|
indicates the element number of the set 𝛿 (𝑠, 𝑔,I).
• ∀𝑠 ∈ 𝑆, 𝑔 ∈ Γ,I ∈ Σ, if 𝛿 (𝑠, 𝑔, 𝜀) ≠ ∅, then 𝛿 (𝑠, 𝑔,I) = ∅.

For the same deterministic context-free grammar, a general PDA
is more accessible to construct than a DPDA. In addition, deter-
ministic context-free languages are a proper subset of context-free
languages. Therefore, in this paper, our proposed approach is based
on the general PDA, which is also applicable to the DPDA.

Algorithm 1 Pseudocode for PDA module to obtain the valid set.
Require: PDA𝑀 and current state 𝑠 as well as stack 𝑔.
Ensure: The set of valid I′𝑠 and corresponding states and stacks.
1: Initial empty valid set 𝑉 and empty queue 𝑄 .
2: Enqueue(𝑄 , (𝑠, 𝑔)).
3: repeat
4: 𝑠, 𝑔← Dequeue(𝑄).
5: for (𝑠, 𝑔,I) ∈ 𝛿.𝑘𝑒𝑦𝑠 () do
6: if I = 𝜀 then
7: Enqueue(𝑄 , 𝛿 (𝑠, 𝑔, 𝜀)).
8: else
9: 𝑉 ← 𝑉 ∪ (I, 𝛿 (𝑠, 𝑔,I)).
10: end if
11: end for
12: until 𝑄 is empty
13: return 𝑉

5 CODEP
In this section, we introduce CODEP, which is constrained by
the PDA module constructed under methodology. This framework
can be compatible with existing Seq2Seq models, no matter it is
an encoder-decoder or a decoder only. In this paper, we employ
Transformer-based encoder-decoder model [35] as the backbone.
We mainly modify the decoder side, which adds PDA module, state
representation, state prediction task, and joint prediction to help
models generate grammatical code.

Fig. 5 shows the model architecture of CODEP. At the encoder
side of models, it maps an input sequence of NL utterances 𝒙 =

{𝑥1, 𝑥2, · · · , 𝑥𝑛} to a sequence of continuous NL representations
𝒛 = {𝑧1, 𝑧2, · · · , 𝑧𝑛}. At the decoder side of models, given the NL
representation sequence 𝒛, it then generates a token sequence of
code, one element at a time. At each step, models generate the next
token in an auto-regressive manner [13], which deploys previous
generation results as additional input.

Figure 5: Diagram of CODEP.

5.1 Token and State Representation
PDA state is a type of valuable information to comprehend the
status of the generated valid prefix in PDA module. In order to
exploit states provided by PDA module, we set both tokens and
corresponding states as the input of decoder. Specifically, given
tokens 𝒚 = {𝑦1, 𝑦2, · · · , 𝑦𝑡−1}, we can obtain corresponding states
𝒔 = {𝑠1, 𝑠2, · · · , 𝑠𝑡−1} from PDA module. Then, 𝒚 and 𝒔 are con-
verted into 𝒉 as follows:

𝒉𝑦 = 𝒆𝑦 + PE(𝒚) (2)
𝒉𝑠 = 𝒆𝑠 + PE(𝒔) (3)
𝒉𝑡 = Concat(𝒉𝑦,𝒉𝑠) (4)

where 𝒆𝑦 and 𝒆𝑠 indicate the embedding of 𝒚 and 𝒔, respectively.
Concat(𝒉𝑦,𝒉𝑠) indicates the concatenation of 𝒉𝑦 and 𝒉𝑠 , and PE
indicates the positional encoding [12]:

PE(𝑝𝑜𝑠,2𝑗) = sin
(
𝑝𝑜𝑠/100002𝑗/𝑑

)
PE(𝑝𝑜𝑠,2𝑗+1) = cos

(
𝑝𝑜𝑠/100002𝑗/𝑑

)
where 𝑝𝑜𝑠 is the position, 𝑗 is the dimension, and 𝑑 is the number
of dimensions (i.e., embedding size).

5.2 Token Prediction Task
To generate code, 𝒉𝑡 and NL description representation 𝒛 are fed
into the decoder:

𝒂𝑡 = Decoder(𝒉𝑡 , 𝒛) (5)
The output of the multi-headed self-attention in the decoder layer
is computed via:

𝑸𝒊 = 𝑯𝑾
𝑸
𝒊 ,𝑲 = 𝑯𝑾𝑲

𝒊 , 𝑽 = 𝑯𝑾𝑽
𝒊 , (6)

𝒉𝒆𝒂𝒅𝒊 = softmax

(
𝑸𝒊𝑲⊤𝒊√︁

𝑑𝑘

)
𝑽𝒊, (7)

𝒉𝒆𝒂𝒅 = Concat(ℎ𝑒𝑎𝑑1, ℎ𝑒𝑎𝑑2, ..., ℎ𝑒𝑎𝑑ℎ)𝑾𝑶 (8)

192

ISSTA ’23, July 17–21, 2023, Seattle, WA, USA Yihong Dong, Ge Li, and Zhi Jin.

Figure 6: An example of state prediction task.

Where 𝑾
𝑸
𝒊 ∈ R

𝑑𝑥×𝑑𝑘 ,𝑾𝑲 ∈ R𝑑𝑥×𝑑𝑘 ,𝑾𝑽 ∈ R𝑑𝑥×𝑑ℎ are learn-
able parameter matrices. After that, a feed-forward layer and layer
normalization are followed.

According to 𝒂𝑡 , we can compute the following probabilities:

𝑝 (gen | 𝒂𝑡) = softmax(W𝑥𝒂𝑡), (9)
𝑝 (copy | 𝒂𝑡) = 1 − 𝑝 (gen | 𝒂𝑡), (10)

𝑝 (𝑣𝑐 | gen, 𝒂𝑡) = softmax(𝒆𝑇𝑣𝑐W𝑣𝒂𝑡), (11)

𝑝 (𝑥𝑖 | copy, 𝒂𝑡 , 𝒙) = softmax(𝒉𝑇𝑥𝑖W𝑥𝒂𝑡) . (12)

where W𝑔 , W𝑣 , and W𝑥 are three different parameter matrices,
𝑣𝑐 indicates one of tokens in the vocabulary, and 𝒉𝑥𝑖 is calculated
by the pointer network [36]. Finally, at t step, the probability of
generated token 𝑦𝑡 can be defined as:

𝑝 (𝑦𝑡 | 𝑦<𝑡 , 𝑠<𝑡 , 𝒙) = 𝑝 (gen | 𝒂𝑡)𝑝 (𝑣𝑐 | gen, 𝒂𝑡)
+ 𝑝 (copy | 𝒂𝑡)𝑝 (𝑥𝑖 | copy, 𝒂𝑡 , 𝒙) . (13)

5.3 State Prediction Task
To better understand the deduction process of PDA, we introduce an
auxiliary task of PDA state prediction. Similar to token prediction,
given 𝑦<𝑡 , 𝑠<𝑡 , and 𝒙 , we can calculate the probability of a state at
𝑡 step as follows:

𝑝 (𝑠𝑡 | 𝑦<𝑡 , 𝑠<𝑡 , 𝒙) = softmax(𝒆𝑇𝑣𝑠W𝑠𝒂𝑡), (14)

where 𝑣𝑠 indicates one of states in vocabulary, W𝑠 is another pa-
rameter matrix, and 𝒂𝑡 is calculated via (5). In this paper, we adopt
the non-terminal symbols of production rules in GPL grammar as
states, which can be changed with PDA you build. Fig. 6 shows an
example of state prediction task. We can see that state prediction
task also gives guidance for generating tokens. For example, ‘for’,
‘in’, and ‘:’ are the fixed pairing of ‘for_stmt’ in Python.

5.4 Training and Inference
The purpose of the training stage is to minimize the sum of cross-
entropy loss for two tasks, which is defined as:

Lce (𝒙,𝒚, 𝒔;𝜽) = Lce
𝑦 (𝒙,𝒚, 𝒔;𝜽) (15)
+ 𝛼 · Lce

𝑠 (𝒙,𝒚, 𝒔;𝜽),

Lce
𝑦 (𝒙,𝒚, 𝒔;𝜽) = −

𝑇∑︁
𝑡=1

log 𝑝 (𝑦𝑡 | 𝑦<𝑡 , 𝑠<𝑡 , 𝒙 ;𝜽) , (16)

Lce
𝑠 (𝒙,𝒚, 𝒔;𝜽) = −

𝑇∑︁
𝑡=1

log 𝑝 (𝑠𝑡 | 𝑦<𝑡 , 𝑠<𝑡 , 𝒙 ;𝜽) , (17)

where 𝜽 is CODEP’s parameter, Lce
𝑦 and Lce

𝑠 are losses of token
prediction task and state prediction task, respectively, and 𝛼 is used
to control the impact of them.

In the inference stage, we are able to calculate 𝑝 (𝑦𝑡 | 𝑦<𝑡 , 𝑠<𝑡 , 𝒙)
via (13) with additional constraints of PDAmodule𝑦𝑡 ∈ {I | (I, 𝑠, 𝑔)
∈ 𝑉 }, where 𝑉 is obtained according to Algorithm 1. Similarly, we
can calculate 𝑝 (𝑠𝑡 | 𝑦<𝑡 , 𝑠<𝑡 , 𝒙) via (14).

Joint Prediction with State. We can leverage both probabilities to
jointly predict the result as follows:

𝑝 (𝑦′𝑡 | 𝑦<𝑡 , 𝑠<𝑡 , 𝒙) =
1

1 + 𝛼 · 𝑝 (𝑦𝑡 | 𝑦<𝑡 , 𝑠<𝑡 , 𝒙)

+ 𝛼

1 + 𝛼 · 𝑝 (𝑠𝑡 | 𝑦<𝑡 , 𝑠<𝑡 , 𝒙), (18)

where 𝑠𝑡 indicates the actual state of PDAmodule, which is obtained
from 𝛿 (𝑠𝑡−1, 𝑔𝑡−1, 𝑦𝑡). Joint prediction wants to prevent CODEP
from generating tokens of inappropriate PDA states.

We provide the pseudocode for the inference procedure of CODEP
in Algorithm 2.

Algorithm 2 The inference procedure of CODEP.
Require: The PDA𝑀 , hyperparameter 𝛼 , parameters of CODEP

𝜽 , and NL utterances 𝒙 .
Ensure: The generated code tokens 𝒚′.
1: Initial 𝑡 ← 0 and obtain 𝑠0 and 𝑔0.
2: repeat
3: Obtain 𝑉 according to Algorithm 1.
4: Calculate 𝑝 (𝑦𝑡 | 𝑦<𝑡 , 𝑠<𝑡 , 𝒙) via (13), where

𝑦𝑡 ∈ {I|(I, 𝑠, 𝑔) ∈ 𝑉 }.
5: Calculate 𝑝 (𝑠𝑡 | 𝑦<𝑡 , 𝑠<𝑡 , 𝒙) via (14).
6: Calculate 𝑝 (𝑦′𝑡 | 𝑦<𝑡 , 𝑠<𝑡 , 𝒙) via (18).
7: 𝑦′𝑡 ← argmax𝑝 (𝑦′𝑡 | 𝑦<𝑡 , 𝑠<𝑡 , 𝒙).
8: 𝑦𝑡 ← 𝑦′𝑡 .
9: 𝑠𝑡+1, 𝑔𝑡+1 = 𝛿 (𝑠𝑡 , 𝑔𝑡 , 𝑦′𝑡)
10: 𝑡 ← 𝑡 + 1
11: until 𝑠𝑡 ∈ 𝐴
12: return 𝒚′

6 EXPERIMENT SETUP
In this section, we delve into a comprehensive explanation of the
experiment setup, covering aspects such as GPL and datasets, base-
lines, evaluation metrics, implementation details, and research ques-
tions.

193

CODEP: Grammatical Seq2Seq Model for General-Purpose Code Generation ISSTA ’23, July 17–21, 2023, Seattle, WA, USA

6.1 GPL and Datasets
We build a PDA for the most popular PL Python (both Python2
and Python3) and conduct experiments on four public benchmark
datasets, i.e., CONALA [42], DJANGO [24], JUICE-10K [1], and
MBPP [3], as follows:

CONALA [42] contains 2,879 real-world data of manually anno-
tated NL questions and their Python3 solutions on STACK OVER-
FLOW.

DJANGO [24] contains 18805 NL-annotated python2 code ex-
tracted from the Django Web data.

JUICE-10K contains 10K training samples randomly selected
from the training set of JUICE [1], and the validation and test sets
of JUICE-10K are consistent with those of JUICE. Due to the high
demand for training resources, we use a subset instead of the full
JuICe dataset.

MBPP [3] contains 974 Python programming problems, which
consist of a task description, code solution, and 3 automated test
cases.

The detailed statistics of the four datasets are shown in Table 2.

Table 2: Statistics of datasets.

Dataset Examples Num Avg Length
Train Dev Test NL Code

CONALA 2,175 200 500 10.2 15.1
DJANGO 16000 1000 1805 14.1 10.6
JUICE 10000 1,831 2,115 40.4 43.4
MBPP - - 974 15.5 32.5

6.2 Baselines
We select two typical Seq2Seq models, i.e., LSTM [15] and Trans-
former [35], as our base models.

For non-pre-trained Seq2Tree methods, we compare CODEP
with TRANX [45], ML-TRANX [40], TRANX-RL [18], APT [9], and
Transformer-AST, which can ensure GC of generated codes relying
on AST.

TRANX [45] uses a Seq2Tree model to generate the AST as the
intermediate representation of code.

ML-TRANX [40] adopts a mutual learning framework to train
models for different traversals-based decodings jointly.

TRANX-RL [18] uses a context-based branch selector to de-
termine optimal branch expansion orders for multi-branch nodes
dynamically.

APT [9] uses antecedent prioritized loss to help Seq2Tree mod-
els attach importance to antecedent predictions by exploiting the
position information of the generated AST nodes.

Transformer-AST indicates a Seq2Tree method based on Trans-
former instead of LSTM adopted in other Seq2Tree methods men-
tioned preceding.

For pre-trained Seq2Seqmethods, we choose encoder-decoder
models, including BART [21] and CodeT5 [38], and decoder-only
models, including CodeGen [23] and InCoder [11].

BART [21] is a pre-training approach for text generation tasks
that learns to map corrupted documents to the original.

CodeT5 [38] is a unified pre-trained encoder-decoder Trans-
former model that makes better use of the code semantics conveyed
from developer-assigned identifiers.

CodeGen [23] is a unified generation model that allows left-to-
right code generation and code infilling/editing by the causal mask
language modeling training objective. In this paper, we employ the
CodeGen-Multi version.

InCoder [11] is a collection of large-scale language models
trained on NL and programming data for conversation-based pro-
gram synthesis.

6.3 Evaluation Metrics
To evaluate the effectiveness of different methods, we use three
widely-used evaluation metrics in code generation: exact matching
accuracy (EM), corpus-level BLEU-4 (BLEU), and CodeBLEU [28],
which considers important grammar and semantic features of codes.
We also use GC and GC percentage (GCP), where GCP indicates
the percentage of grammatically generated codes in all generated
codes.

6.4 Implementation Details
We train our model with Adam [20] optimizer on a single GPU of
Tesla A100-PCIe-40G. We set sizes of the word embedding, code
embedding, state embedding, and hidden state as 256, 256, 256, and
512, respectively. The learning rate is set to 0.0001 for Transformer-
based CODEP and 0.001 for LSTM-based CODEP. For additional
hyperparameter 𝛼 , we pick 𝛼 ∈ [0, 1] on validation sets. The beam
size is set to 2 for MBPP and 15 for the other datasets. For the
approaches mentioned in Section 6.2, we follow the settings in their
paper. To mitigate the instability of the model training, we exhibit
the average performance of the model running five times.

6.5 Research Questions
Our study is centered around five main research questions (RQs):

RQ1: How does the proposed CODEP perform compared to the
state-of-the-art Seq2Tree methods, which guarantees the syntac-
tical correctness of the generated code relying on AST, without
pre-training?

RQ2: How does each part of our proposed approach contribute
to CODEP?

RQ3: How does the proposed PDA module improve the effec-
tiveness of the state-of-the-art pre-trained Seq2Seq methods?

RQ4: What is the performance of code generated with the help
of the PDA module?

RQ5: How well does the code generated by CODEP compile,
and are there any solutions to compile errors?

7 EXPERIMENTAL RESULTS
In this section, we present the results of our empirical experiments,
conducted specifically to answer the aforementioned RQs.

7.1 RQ1: CODEP vs. Seq2Tree Methods
From Tables 3, we can observe that CODEP substantially outper-
forms SOTA Seq2Treemethods without pre-training on three public
benchmark datasets in terms of BLEU, CodeBLEU, and EM. It indi-
cates that although both Seq2Tree methods and CODEP generate

194

ISSTA ’23, July 17–21, 2023, Seattle, WA, USA Yihong Dong, Ge Li, and Zhi Jin.

Table 3: Comparison of CODEP and Seq2Tree methods.

Model CONALA DJANGO JUICE-10K

BLEU CodeBLEU EM EM BLEU CodeBLEU

Seq2Tree methods w/o pre-training
TRANX [45] 24.35 ± 0.4 26.80 ± 0.6 2.5 ± 0.7 77.3 ± 0.4 4.63 ± 0.2 13.09 ± 0.4
ML-TRANX [40] 24.42 ± 0.8 27.59 ± 1.0 2.2 ± 0.4 79.6 ± 0.3 4.75 ± 0.4 13.43 ± 0.5
TRANX-RL [18] 25.47 ± 0.7 25.14 ± 1.0 2.6 ± 0.4 77.9 ± 0.5 6.08 ± 0.3 13.78 ± 0.6
APT [9] 27.56 ± 0.7 28.54 ± 0.7 2.9 ± 0.7 79.3 ± 0.5 5.78 ± 0.5 14.19 ± 0.5
Transformer-AST 26.50 ± 0.4 27.31 ± 0.4 1.8 ± 0.2 77.1 ± 0.5 4.80 ± 0.3 13.57 ± 0.4
LSTM 24.23 ± 0.7 25.76 ± 0.8 2.0 ± 0.7 70.5 ± 0.4 4.54 ± 0.5 13.13 ± 0.7
CODEP (LSTM-based) 28.22 ± 0.8 30.12 ± 0.9 (↑ 17%) 3.0 ± 0.6 79.6 ± 0.6 (↑ 13%) 6.32 ± 0.6 15.24 ± 0.6 (↑ 16%)
Transformer 24.21 ± 0.8 25.40 ± 0.9 2.0 ± 0.6 74.1 ± 0.7 4.67 ± 0.4 14.08 ± 0.5
CODEP (Transformer-based) 27.87 ± 0.9 29.49 ± 0.9 (↑ 16%) 2.6 ± 0.8 79.7 ± 0.5 (↑ 8%) 7.26 ± 0.5 16.09 ± 0.6 (↑ 15%)

Table 4: Ablation study of CODEP, where SR represents state representation, SPT represents state prediction task, and JP
represents joint prediction.

Model CONALA DJANGO JUICE-10K
BLEU CodeBLEU GCP EM GCP BLEU CodeBLEU GCP

CODEP (LSTM-based) 28.22 30.12 100% 79.6 100% 6.32 15.24 100%
-JP 27.81 29.54 100% 78.7 100% 5.96 15.04 100%
-SPT 27.36 28.95 100% 77.3 100% 5.38 14.26 100%
-SR 27.97 29.98 100% 77.6 100% 5.54 14.47 100%
-PDA-JP 26.37 27.49 80.8% 74.1 91.1% 5.09 13.87 54.7%
-PDA-SR-SPT-JP 24.23 25.76 69.4% 70.5 89.5% 4.54 13.13 43.9%

CODEP (Transformer-based) 27.87 29.49 100% 79.7 100% 7.26 16.09 100%
-JP 27.05 28.85 100% 78.9 100% 7.12 15.82 100%
-SPT 26.72 27.79 100% 77.8 100% 6.59 15.52 100%
-SR 27.13 28.83 100% 78.3 100% 6.97 15.68 100%
-PDA-JP 26.32 27.46 81.4% 76.7 92.3% 5.45 15.20 57.6%
-PDA-SR-SPT-JP 24.21 25.40 70.6% 74.1 90.1% 4.67 14.79 45.3%

grammatical codes, CODEP takes advantage of the shorter genera-
tion sequence length of code tokens than AST nodes. We also find
that Transformer-based CODEP achieves competitive performance
against LSTM-based CODEP on CONALA. However, on DJANGO
and JUICE-10K, Transformer-based CODEP exhibits its superiority
due to more extensive training data and longer generated token
sequence. Therefore, for large dataset and long code generation, we
recommend employing Transformer as the base model of CODEP.
Since the decoder of most Seq2Tree methods without pre-training
is based on LSTM, we implement Transformer-AST to verify that
the effect of CODEP is derived from our proposed approach rather
than the base model. The experimental results demonstrate that
our enhancements are not primarily attributable to the changes of
the base model.

7.2 RQ2: Ablation Study
In Table 4, we demonstrate the performance of LSTM-based and
Transformer-based CODEP with the reduction of some parts of
them. The results indicate that each part of CODEP contributes,
and PDA module is the most critical part of CODEP. When PDA
module is removed, GCP drops sharply, which is inversely corre-
lated with the average code length of datasets, and other evaluation

metrics also have degradation. JP becomes unavailable due to the
dependence of JP on the mapping from the token to the correspond-
ing state provided by PDA module. In addition, it can be seen that
only reducing JP or SR leads to a relatively small decrease in perfor-
mance, because they have some overlap with other parts in helping
the model. ‘-PDA-SR-SPT-JP’ represents that only the base model is
used, which has a significant performance degradation compared
to CODEP (both LSTM-based and Transformer-based). As shown
in Tables 3, it relatively improves 17%/16% CodeBLEU on CONALA,
13%/8% EM on DJANGO, and 16%/15% CodeBLEU on JUICE-10K
compared to the base models.

7.3 RQ3: Improvement of Seq2Seq Methods
with PDA Module

It is apparent from Table 6 that pre-trained models fail to work on
MBPP in zero-shot setting. For encoder-decoder models, BART is
only pre-trained on the data of text generation tasks, while CodeT5
is pre-trained on paired NL-code data of six PLs, but cannot distin-
guish what PL needs to be generated. For decoder-only models, we
explore their performance under conditions that no prompt is given
or only "def" is given as prompt, because traditional prompt ‘def

195

CODEP: Grammatical Seq2Seq Model for General-Purpose Code Generation ISSTA ’23, July 17–21, 2023, Seattle, WA, USA

Table 5: Examples of code generation for each pre-trained model with zero-shot setting, where NL is ‘Write a function to find
the similar elements from the given two tuple lists’ and GOLD denotes the reference code.

Model Code

BART-125M Write a function to find the similar elements from the given two tuple lists.
CodeT5-220M def f_elements()
CodeT5-770M to find the similar elements ." ," ." ," a function to find the similar elements from the given two tuple lists .
CodeGen-350M def find_similar (t1 , t2): \n """ \n Finds the similar elements from the given two tuples. \n \n
InCoder-1B def similar_elements (t1, t2): \n \n \n \n \n \n \n \n \n \n \n \n
CodeGen-350M +PDA def find (a , b): \n for i in range (len (a)): \n if a [i] == b [i]: \n return a[i]
GOLD def similar_elements (test_tup1, test_tup2) : \n res = tuple (set (test_tup1) & set (test_tup2)) \n return (res)

Table 6: The results of each pre-trained Seq2Seq method with
PDA module in zero-shot setting.

Model MBPP (Zero-shot)

BLEU CodeBLEU GC

Encoder-decoder methods w/ pre-training
BART-125M 0.02 3.74 False
+PDA 4.83 9.17 True
CodeT5-220M 0.01 0.57 False
+PDA 4.75 9.79 True
CodeT5-770M 0.02 3.98 False
+PDA 6.19 9.31 True

Decoder-only methods w/ pre-training
CodeGen-350M 1.55 3.21 False
+prompt 0.33 10.13 False
+PDA 14.44 21.54 True
InCoder-1B 0.12 7.41 False
+prompt 0.82 7.22 False
+PDA 9.84 17.38 True

+ function signature’ contains much valid information of function
signature, including function name, argument type and name, and
even return value type. Therefore, their failures are to be expected
since they are working in unfamiliar territory.

As can be seen from Table 6, pre-trained sequence-based models
achieve significant improvements with the help of PDAmodule. The
reason may be that pre-training models have the ability to answer
questions, but do not know how to organize them into well-formed
codes. Under the constraints of PDA module, pre-training models
are guided to exert their capabilities by generating grammatical
codes. Especially, (BLEU, CodeBLEU) of CodeGen-350M without
prompt improvement from (1.55, 3.21) to (14.44, 21.54) on MBPP in
zero-shot setting.

7.4 RQ4: Case Study
In Table 5, we demonstrate examples of code generation for each
pre-trained model in zero-shot setting. We can see that the output
of BART-125M directly replicates NL, which is related to its pre-
training task. CodeT5-220M understands some syntactic structures,
but the short length of their generated code is the main factor
limiting their performance. CodeT5-770M tries to capture some
semantic information at the beginning and continues to copy later.
InCoder only generates the function signature and fails to generate

its main body. CodeGen-350M generates the function signature
and some comments capturing semantic information, which shows
the ability to generate complete code if under proper guidelines.
Under the constraints of PDA module, CodeGen-350M generates
grammatical code. Although the code generated by CodeGen-350M
+ PDA still falls short of GOLD, we still think it is an impressive
result considering that it is under the zero-shot setting.

7.5 RQ5: Compilation Error Analysis
Program execution needs to be compiled correctly in addition to
being grammatically correct, and grammatical correctness is the
foundation of compilation. The compilation rate of CODEP on
CONALA dataset is 99.2%, and Table 7 demonstrates examples
of three types of compilation error. The first type of compilation
error is because the number type cannot be assigned, the second
type of compilation error is the error of the duplicate parameter,
and the third type of compilation error is the mapping error. We
found that the preceding types of errors also occur in the Seq2Tree
methods. For the first two types of errors, we are able to modify
the transfer function, while the last type of error can be avoided
using engineering methods.

Table 7: Three types of compilation error generated by
CODEP on CONALA dataset.

Type Example

I 1 = [(i , 2) for i in range(1)]

II plt.plot(x, var1, color=‘str0’, color=‘str1’)

III html = response.read(str0, ‘str0’)
slot_map={str0: http://www.example.com/}

8 LIMITATION
There are three major limitations of our work:
• First, a specific PDA should be built for each PL, and we only
built PDA for Python (including both Python2 and Python3).
However, PDA can recognize context-free language to which
PL belongs, due to time and memory limitations of running
PL [29]. In future work, we plan to build PDAs for more PLs.

196

ISSTA ’23, July 17–21, 2023, Seattle, WA, USA Yihong Dong, Ge Li, and Zhi Jin.

• Second, our work ensures GC, but neither our work nor other
works can prevent compilation errors. With our proposed
training framework, our work outperforms other works on
compilation rates, e.g., CODEP has 99.2% compilation rates
after training on CONALA.
• Third, using PDA will increase CPU operation and memory
overhead, but it is still acceptable.

9 CONCLUSION AND FUTUREWORK
In this paper, we have proposed a Seq2Seq-based framework, namely
CODEP, that first integrates the deduction of PDA into deep learn-
ing for code generation. CODEP adds PDA module, state repre-
sentation, state prediction task, and joint prediction for the de-
coder of CODEP. PDA module guarantees the GC of generated
codes, while the others make use of valid information provided by
PDA module (i.e., PDA state) to generate codes better. As a result,
CODEP dramatically enhances the performance of base models
and outperforms SOTA Seq2Tree methods without pre-training on
three benchmark datasets. The ablation study demonstrates each
component of CODEP contributes. With the help of PDA module,
pre-trained models also achieve significant improvements.

PDA module shows excellent potential in code generation tasks
in zero-shot setting, which can help pre-trained models apply to
niche PLs that have little data. Furthermore, PDA can accommodate
context-free language to satisfy grammar constraints, not just PL.
We hope this work sheds light on future work in this direction.

10 ACKNOWLEDGMENTS
This research is supported by the National Key R&D Program under
Grant No. 2021ZD0110303, the National Natural Science Foundation
of China under Grant Nos. 62192733, 62192730, 62192731, 61751210,
62072007, and 61832009.

A APPENDIX
A.1 Syntax-Strings and Token-Types in Python
In Table 8, we show each of the 83 syntax-strings and 10 token-types
in Python.

Table 8: Terminal symbols of Python grammar.

Python

Syntax-string

‘for’, ‘in’, ‘try’, ‘finally’, ‘with’, ‘except’, ‘lambda’,
‘or’, ‘and’, ‘not’, ‘del’, ‘pass’, ‘break’, ‘continue’,
‘return’, ‘raise’, ‘from’, ‘import’, ‘as’, ‘nonlocal’,
‘global’, ‘assert’, ‘if’, ‘else’, ‘elif’, ‘while’, ‘async’,
‘def’, ‘@’, ‘(’, ‘)’, ‘->’, ‘:’, ‘**’, ‘*’, ‘,’, ‘=’, ‘;’, ‘^=’, ‘%=’,
‘//=’, ‘@=’, ‘«=’, ‘**=’, ‘&=’, ‘*=’, ‘|=’, ‘»=’, ‘-=’, ‘+=’,
‘/=’, ‘.’, ‘...’, ‘<=’, ‘>=’, ‘is’, ‘==’, ‘<’, ‘>’, ‘<>’, ‘!=’, ‘|’,
‘^’, ‘&’, ‘«’, ‘»’, ‘+’, ‘-’, ‘%’, ‘/’, ‘//’, ‘~’, ‘!’, ‘await’,
‘False’, ‘[’, ‘{’, ‘True’, ‘None’, ‘]’, ‘}’, ‘class’, ‘yield’

Token-type
‘NAME’, ‘STRING’, ‘NUMBER’, ‘INDENT’,
‘DEDENT’, ‘FSTRING_START’, ‘FSTRING_END’,
‘FSTRING_STRING’, ‘NEWLINE’, ‘ENDMARKER’

Figure 7: Effects of 𝛼 on the validation sets.

A.2 Effect of 𝛼
The coefficient 𝛼 is an important hyperparameter that controls the
relative impacts of the state prediction task in the training stage
and that of the joint prediction with the state probability in the
inference stage. Therefore, we investigate the effect of 𝛼 on our
proposed framework in Fig. 7, which varies 𝛼 from 0 to 1 with
an increment of 0.2 on the validation set of CONALA, DJANGO,
and JUICE-10K datasets. The experimental results show that as
𝛼 increases, the performance of CODEP increases when 𝛼 ≤ 0.4,
and its tendency is related to the base model and the dataset when
𝛼 > 0.4. What stands out in Fig. 7 is that CODEP performs relatively
well on each of the preceding datasets when 𝛼 is set to 1.0, which
indicates the effectiveness of the state prediction task and joint
prediction. For experiments in this paper, we set 𝛼 as the optimal 𝛼
in Fig. 7. In particular, the 𝛼 ′𝑠 of the LSTM-based CODEP and the
transformer-based CODEP are set to (0.6, 1.0), (0.8, 1.0), and (1.0,
0.4) on CONALA, DJANGO, and JUICE-10K dataset, respectively.

197

CODEP: Grammatical Seq2Seq Model for General-Purpose Code Generation ISSTA ’23, July 17–21, 2023, Seattle, WA, USA

REFERENCES
[1] Rajas Agashe, Srinivasan Iyer, and Luke Zettlemoyer. 2019. JuICe: A Large Scale

Distantly Supervised Dataset for Open Domain Context-based Code Generation.
In EMNLP/IJCNLP (1). 5435–5445.

[2] Wasi Uddin Ahmad, Saikat Chakraborty, Baishakhi Ray, and Kai-Wei Chang. 2021.
Unified Pre-training for Program Understanding and Generation. In NAACL-HLT.
Association for Computational Linguistics, 2655–2668.

[3] Jacob Austin, Augustus Odena, Maxwell I. Nye, Maarten Bosma, Henryk
Michalewski, David Dohan, Ellen Jiang, Carrie J. Cai, Michael Terry, Quoc V. Le,
and Charles Sutton. 2021. Program Synthesis with Large Language Models. CoRR
abs/2108.07732 (2021).

[4] Ruisheng Cao, Su Zhu, Chen Liu, Jieyu Li, and Kai Yu. 2019. Semantic Parsing
with Dual Learning. In ACL (1). 51–64.

[5] Noam Chomsky. 1962. Context-free grammars and pushdown storage. MIT Res.
Lab. Electron. Quart. Prog. Report. 65 (1962), 187–194.

[6] Li Dong and Mirella Lapata. 2016. Language to Logical Form with Neural Atten-
tion. In ACL (1).

[7] Yihong Dong, Jiazheng Ding, Xue Jiang, Zhuo Li, Ge Li, and Zhi Jin. 2023.
CodeScore: Evaluating Code Generation by Learning Code Execution. CoRR
abs/2301.09043 (2023).

[8] Yihong Dong, Xue Jiang, Zhi Jin, and Ge Li. 2023. Self-collaboration Code
Generation via ChatGPT. CoRR abs/2304.07590 (2023).

[9] Yihong Dong, Ge Li, and Zhi Jin. 2022. Antecedent Predictions Are Dominant
for Tree-Based Code Generation. CoRR abs/2208.09998 (2022).

[10] R James Evey. 1963. Application of pushdown-store machines. In Proceedings of
the November 12-14, 1963, fall joint computer conference. 215–227.

[11] Daniel Fried, Armen Aghajanyan, Jessy Lin, Sida Wang, Eric Wallace, Freda Shi,
Ruiqi Zhong, Wen-tau Yih, Luke Zettlemoyer, and Mike Lewis. 2022. InCoder: A
Generative Model for Code Infilling and Synthesis. CoRR abs/2204.05999 (2022).

[12] Jonas Gehring, Michael Auli, David Grangier, Denis Yarats, and Yann N. Dauphin.
2017. Convolutional Sequence to Sequence Learning. In ICML (Proceedings of
Machine Learning Research, Vol. 70). PMLR, 1243–1252.

[13] Alex Graves. 2013. Generating Sequences With Recurrent Neural Networks.
CoRR abs/1308.0850 (2013).

[14] Daya Guo, Shuai Lu, Nan Duan, Yanlin Wang, Ming Zhou, and Jian Yin. 2022.
UniXcoder: Unified Cross-Modal Pre-training for Code Representation. In ACL
(1). Association for Computational Linguistics, 7212–7225.

[15] Sepp Hochreiter and Jürgen Schmidhuber. 1997. Long Short-Term Memory.
Neural Comput. 9, 8 (1997), 1735–1780.

[16] Robin Jia and Percy Liang. 2016. Data Recombination for Neural Semantic Parsing.
In ACL (1).

[17] Hui Jiang, Linfeng Song, Yubin Ge, Fandong Meng, Junfeng Yao, and Jinsong Su.
2022. An AST Structure Enhanced Decoder for Code Generation. IEEE ACM
Trans. Audio Speech Lang. Process. 30 (2022), 468–476.

[18] Hui Jiang, Chulun Zhou, Fandong Meng, Biao Zhang, Jie Zhou, Degen Huang,
Qingqiang Wu, and Jinsong Su. 2021. Exploring Dynamic Selection of Branch
Expansion Orders for Code Generation. In ACL/IJCNLP. 5076–5085.

[19] Xue Jiang, Yihong Dong, Lecheng Wang, Qiwei Shang, and Ge Li. 2023. Self-
planning Code Generation with Large Language Model. CoRR abs/2303.06689
(2023).

[20] Diederik P. Kingma and Jimmy Ba. 2015. Adam: A Method for Stochastic Opti-
mization. In ICLR.

[21] Mike Lewis, Yinhan Liu, Naman Goyal, Marjan Ghazvininejad, Abdelrahman
Mohamed, Omer Levy, Veselin Stoyanov, and Luke Zettlemoyer. 2020. BART:
Denoising Sequence-to-Sequence Pre-training for Natural Language Genera-
tion, Translation, and Comprehension. In ACL. Association for Computational
Linguistics, 7871–7880.

[22] Wang Ling, Phil Blunsom, Edward Grefenstette, Karl Moritz Hermann, Tomás
Kociský, Fumin Wang, and Andrew W. Senior. 2016. Latent Predictor Networks
for Code Generation. In ACL (1).

[23] Erik Nijkamp, Bo Pang, Hiroaki Hayashi, Lifu Tu, Huan Wang, Yingbo Zhou, Sil-
vio Savarese, and Caiming Xiong. 2022. A Conversational Paradigm for Program
Synthesis. CoRR abs/2203.13474 (2022).

[24] Yusuke Oda, Hiroyuki Fudaba, Graham Neubig, Hideaki Hata, Sakriani Sakti,
Tomoki Toda, and Satoshi Nakamura. 2015. Learning to generate pseudo-code
from source code using statistical machine translation. In 2015 30th IEEE/ACM
International Conference on Automated Software Engineering (ASE). IEEE, 574–584.

[25] Gabriel Poesia, Oleksandr Polozov, Vu Le, Ashish Tiwari, Gustavo Soares, Christo-
pher Meek, and Sumit Gulwani. 2022. Synchromesh: Reliable code generation
from pre-trained language models. CoRR abs/2201.11227 (2022).

[26] Maxim Rabinovich, Mitchell Stern, and Dan Klein. 2017. Abstract Syntax Net-
works for Code Generation and Semantic Parsing. In ACL (1). 1139–1149.

[27] Veselin Raychev, Martin T. Vechev, and Eran Yahav. 2014. Code completion with
statistical language models. In PLDI. 419–428.

[28] Shuo Ren, Daya Guo, Shuai Lu, Long Zhou, Shujie Liu, Duyu Tang, Neel Sundare-
san, Ming Zhou, Ambrosio Blanco, and Shuai Ma. 2020. CodeBLEU: a Method
for Automatic Evaluation of Code Synthesis. CoRR abs/2009.10297 (2020).

[29] Arto Salomaa, Derick Wood, and Sheng Yu. 2001. A half-century of automata
theory: celebration and inspiration. World scientific.

[30] Torsten Scholak, Nathan Schucher, and Dzmitry Bahdanau. 2021. PICARD:
Parsing Incrementally for Constrained Auto-Regressive Decoding from Language
Models. In EMNLP (1). Association for Computational Linguistics, 9895–9901.

[31] Marcel Paul Schützenberger. 1963. On context-free languages and push-down
automata. Information and control 6, 3 (1963), 246–264.

[32] Sijie Shen, Xiang Zhu, Yihong Dong, Qizhi Guo, Yankun Zhen, and Ge Li. 2022.
Incorporating domain knowledge through task augmentation for front-end
JavaScript code generation. In ESEC/SIGSOFT FSE. ACM, 1533–1543.

[33] Zeyu Sun, Qihao Zhu, Lili Mou, Yingfei Xiong, Ge Li, and Lu Zhang. 2019. A
Grammar-Based Structural CNN Decoder for Code Generation. In AAAI. 7055–
7062.

[34] Zeyu Sun, Qihao Zhu, Yingfei Xiong, Yican Sun, Lili Mou, and Lu Zhang. 2020.
TreeGen: A Tree-Based Transformer Architecture for Code Generation. In AAAI.
8984–8991.

[35] Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones,
Aidan N. Gomez, Lukasz Kaiser, and Illia Polosukhin. 2017. Attention is All
you Need. In NIPS. 5998–6008.

[36] Oriol Vinyals, Meire Fortunato, and Navdeep Jaitly. 2015. Pointer Networks. In
NIPS. 2692–2700.

[37] Xin Wang, Yasheng Wang, Yao Wan, Fei Mi, Yitong Li, Pingyi Zhou, Jin Liu, Hao
Wu, Xin Jiang, and Qun Liu. 2022. Compilable Neural Code Generation with
Compiler Feedback. In ACL (Findings). Association for Computational Linguistics,
9–19.

[38] Yue Wang, Weishi Wang, Shafiq R. Joty, and teven C. H. Hoi. 2021. CodeT5:
Identifier-aware Unified Pre-trained Encoder-Decoder Models for Code Under-
standing and Generation. In EMNLP (1). 8696–8708.

[39] Bolin Wei, Ge Li, Xin Xia, Zhiyi Fu, and Zhi Jin. 2019. Code Generation as a Dual
Task of Code Summarization. In NeurIPS. 6559–6569.

[40] Binbin Xie, Jinsong Su, Yubin Ge, Xiang Li, Jianwei Cui, Junfeng Yao, and Bin
Wang. 2021. Improving Tree-Structured Decoder Training for Code Generation
via Mutual Learning. In AAAI. 14121–14128.

[41] Mengfei Yang, Bin Gu, Zhenhua Duan, Zhi Jin, Naijun Zhan, Yunwei Dong, Cong
Tian, Ge Li, Xiaogang Dong, and Xiaofeng Li. 2022. Intelligent program synthesis
framework and key scientific problems for embedded software. Chinese Space
Science and Technology (2022), 1.

[42] Pengcheng Yin, Bowen Deng, Edgar Chen, Bogdan Vasilescu, and GrahamNeubig.
2018. Learning to mine aligned code and natural language pairs from stack
overflow. In MSR. 476–486.

[43] Pengcheng Yin and Graham Neubig. 2017. A Syntactic Neural Model for General-
Purpose Code Generation. In ACL (1). 440–450.

[44] Pengcheng Yin and Graham Neubig. 2018. TRANX: A Transition-based Neural
Abstract Syntax Parser for Semantic Parsing and Code Generation. In EMNLP
(Demonstration). 7–12.

[45] Pengcheng Yin and GrahamNeubig. 2019. Reranking for Neural Semantic Parsing.
In ACL. 4553–4559.

Received 2023-02-16; accepted 2023-05-03

198

	Abstract
	1 Introduction
	2 Motivation Example
	3 Related Work
	3.1 General-Purpose Code Generation
	3.2 Domain-Specific Code Generation

	4 Methodology
	5 CODEP
	5.1 Token and State Representation
	5.2 Token Prediction Task
	5.3 State Prediction Task
	5.4 Training and Inference

	6 Experiment Setup
	6.1 GPL and Datasets
	6.2 Baselines
	6.3 Evaluation Metrics
	6.4 Implementation Details
	6.5 Research Questions

	7 Experimental Results
	7.1 RQ1: CODEP vs. Seq2Tree Methods
	7.2 RQ2: Ablation Study
	7.3 RQ3: Improvement of Seq2Seq Methods with PDA Module
	7.4 RQ4: Case Study
	7.5 RQ5: Compilation Error Analysis

	8 Limitation
	9 Conclusion and Future work
	10 Acknowledgments
	A Appendix
	A.1 Syntax-Strings and Token-Types in Python
	A.2 Effect of

	References

